The Energy Drill! Enhancing energy education with action and technology

Heather Davidson-Meyn, P.Eng
Milton Hydro / IndEco Strategic Consulting

Sustainable Development in Communities Royal Botanical Gardens November 26, 2007

energydrill

- What is the Energy Drill?
- > The Pilot
- Results
- Challenges & Lessons Learned
- What's next?

energydrill

- Demand Response program in schools
- Pilot program
- > 2006-2007 school year

Like a Fire Drill...

> Instead of a fire...

Instead of a bell...

- Instead of everyone...
- Instead of evacuating...
- Instead of trudging back to class...

Pilots

2005/6

2006/7

A UNIQUE Demand Response Program

> Typical Demand Response:

"mechanisms to manage demand from customers in response to supply conditions, for example reducing consumption at critical times"

- DR in province of Ontario generally critical time response with real-time assessment
- Immediate and urgent

A UNIQUE Demand Response Program

Schools: a UNIQUE audience in a UNIQUE environment

- Busy schedules
- Teachers need time to prepare
- Students require order and routine, not chaos!
- Students are at various levels of understanding, ability, judgement, responsibility
- Lots of participants
- Participants 'difficult' to reach
- Learning activities can not be compromised
- Educational opportunities go hand-in-hand

A UNIQUE Demand Response Program

Schools require a UNIQUE demand response program

- Day ahead notification, with forecasted indicators of supply constraints as triggers
- Rehearsed, predetermined response with checklist prompts
- No-cost, repeatable response
- Full day response minimizes urgency so spreading the message is easier
- Full day response encourages participation when possible
- Only non-essentials were turned off
- Integrated educational messages
- Flexible program design encourages ownership

School recruitment

- > 8 schools
- > 3 school boards
- > 2 high schools
- Letter of commitment
- Designated Energy Teams
- Program kick-off

Education Plan

7 Key Messages

- Electricity use burns fossil fuels
- Electricity use affects local air quality
- Electricity use contributes to climate change
- When we use electricity matters
- Electricity costs money
- Electricity is a highly valued resource that we need to manage wisely
- Electricity management is everyone's responsibility together

Determining the Triggers

4 Triggers

- Liaison with IESO
- Considerations:
 - 1. Indication of need
 - 2. Frequency
 - 3. Accessibility
 - 4. Messaging

Determining the Triggers

4 Triggers

- Extreme temperatures
 - -5°C or less or 26°C or more
- Smog
 - Poor air quality forecast
- Supply constraints
 - IESO TLRP advisory
- High electricity market price
 - 18 cents per kWh or more day ahead estimate

Spreading the message

- Integrate messaging into Energy Drill response 'Protocol'
- Training
- Ongoing educational activities
- Media
 - Movie, posters, fact sheets, stickers

Spreading the message

Training activities

- Staff training: "Sell"
- Student presentations: "Introduce, Motivate and Engage"
- Energy Team training: "Teach"

Unique Demand Response: The Drill

Measures on an Energy Drill were:

- Specific to school
- Rehearsed
- Full-day
- Possible while still functioning day-to-day
- Simple, repeatable
- No-cost

> And considered:

- What students do / do not have access to
- Safety

Unique Demand Response: The Drill

- Demand Response opportunities:
 - Reduce lighting
 - Turn off computers/monitors
 - Turn off / defer use of unnecessary equipment
 - HVAC/BAS:
 - Reset thermostats
 - Reschedule processes

Technology Behind the Scenes

- Notification software
- Install interval meters
- Baselining
- Analysis and Report Card Software

Analysis and Reporting Software

> Input:

- Electricity Use data for Energy Drill day
- Baseline coefficients
- Weather data for Energy Drill day

> Black box:

 Comparison of Drill day peak demand to baseline 'expected' peak demand for that school

Output:

- Peak demand savings
- Equivalent number of TVs turned off
- Equivalent number of cars off the road for a day

Not Automated!

CONGRATULATIONS!

on running a successful Energy Drill at Robert Baldwin Public School

Here are your results:

Circumstances on the Energy Drill day

Energy Orill date:

Tuesday, May 15, 2007

The Energy Orithe as triggered by:

Estante digniferroerdutes

17.2 kW

232.9 TVs

12,1 kg

1.0 can

Highest lemperature on day of child	22.4 G
Especial peak electricity demonstration day of this	7.41%

Results of the Energy Drill

Audioal peak energy demand an day of thit #6.1 LH

Peak electricity demand reduction:

Equivalent number of typical TVs turned off':

Graenhouse gases (COg) saved per hour of peak demand reduction? "t

Equivalent number of typical Canadian cars taken off the road for one day***

Results of all Energy Drills to date

Fold number of drift inn to date:

Highest peak savings during a drift to date:

Lowest peak savings during a drift to date:

4. **EXEMPT **Average peak savings during a drift to date:

**EXEMPT **EXEM

The graph below shows a comparison between your schools action else Holly compared during an Energy Drift and your schools expected peak electricity demand for the day if there was no Energy Drift.

* Based on the average Mention altaway 74W will fulled or fartlewing. For Lower or Service yielderal Lobo along

*** forestion a talkate dor under typical Consecution approximating 4,27% to C.C./year, from the investigation.

^{**} liquid an a 2007 on the marget local graphs of electricity general orient transformator 2 No. ic of 277, 41g, 22 g t W. Rom —www.lingspower.com

Results - General

- Very positive response from all participants
- Strong educational opportunities

Interested students

- School wide learning
- > Empowerment!

Results – Surveys

- Grade 4-8 student results
- Knowledge Electricity can pollute the air we breathe (47% pre -> 70% post)
- Attitude I want to be an energy conserver (61% pre -> 64% post)
- Beliefs My school is a good 'energy conserver' (36% pre -> 75% post)
- Behaviour I always turn off computer monitors (22% pre -> 45% post)

Results - Technical

- Results of successful drills only; per school per drill:
 - Peak demand savings range up to 30%, avg 5.4%
 - Peak demand savings up to 90kW
 - TVs off range up to 1209, avg 213
 - Cars off the road range up to 5.4, avg 1
- Across nearly 5000 Ontario schools: 130 MW peak savings
- Greater potential considering permanent culture change, more action

Challenges & Lessons Learned

- Timelines competing priorities in schools
- Working with teachers
- The importance of the Energy Champion
- Flexible program design
- Action-oriented!
- Results feedback is important
- Technical difficulties
 - Baseline coefficients
 - Reporting and analysis
 - Lower results than possible
- Program potential
- Permanent culture change

What's next?

- Expanded pilot
- Integrated curriculum
- Build on success of ACTION!
- Use TECHNOLOGY to improve upon technical aspects (baselining, savings and reduction analysis and results)
- Aggregation of DR to an incentive earning portfolio
- Eventual roll-out across all Ontario schools

What's next?

In-class
monitoring
and
feedback
module

What's next?

Potential for remote monitoring, feedback and control

Thank you!

Heather Davidson-Meyn, P.Eng IndEco Strategic Consulting

hdavidson-meyn@indeco.com 416-204-0361

